

PMMA XL Thermal Conductivity

The U-factor, or overall heat transmission coefficient, is the amount of heat which will pass through one square foot of a specific thickness of material per hour. U factors depend on specific conditions and differ for summer and winter.

W/m ² .C	Vertical In	stallation	Horizontal Installation						
Sheet Thickness	Summer Conditions	Winter Conditions	Summer Conditions	Winter Conditions					
3.0 mm (1/8")	5.56	6.01	4.48	6.52					
4.5 mm (3/16")	5.33	5.78	4.31	6.18					
6.0 mm (1/4")	5.1	5.5	4.19	5.9					
12.0 mm (1/2")	4.31	4.59	3.68	4.93					
24.0 mm (1")	3.34	3.51	3.0	3.74					

						_					i
THERMAL PROPERTIES											
Coefficient of linear expansion	EN 2155-1	T 51251	D I N 52328		mm/m/°C	T		0.065			0.065
Thermal conductivity			D I N 52612		W/m/°C			0.17			0.19
Specific heat			ASTM C 351		J/g/°C	Τ		1.32			1.32
Insulation coefficient K			D I N 4701			Ì					
3 mm thick					W/m²/°C	Τ	3	5.4		3	5.4
5 mm thick					W/m²/°C		5	5.1		5	5.1
10 mm thick					W/m²/°C		10	4.5		10	4.5

Total Heat Loss or Gain through a Window Due to Conduction/Convection

 $\label{eq:heat_Loss} \textbf{(Btu/hr)} = \textbf{Window Area } (sq. \ ft.) \ X \ [\textbf{Indoor Temp}(^{\circ}F) - \textbf{Outdoor Temp}(^{\circ}F)] \ X \\ \textbf{U-Factor}$

For glazing applications, there are some things that should be taken into consideration when designing the framework: thermal contraction and expansion, moisture expansion and contraction, and foreshortening due to deflection under load.